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Stochastic Dynamics of the Cubic Map: A Study of 
Noise-Induced Transition Phenomena 
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The effects of finite-amplitude, additive noise on the dynamics generated by a 
one-dimensional, two-parameter cubic map are considered. The underlying 
deterministic system exhibits bistability and hysteresis, and noise-induced pro- 
cesses associated with these phenomena are studied. If a bounded noise source is 
applied to this system, trajectories may be confined to a finite region. Mecha- 
nisms are given for the merging transitions between different parts of this region 
and the eventual escape from it as the noise level is increased. The noisy 
dynamics is also represented by an integral evolution operator, with an equilib- 
rium density function with finite support. The operator's spectrum is determined 
as a function of map parameters and noise amplitude. Such noisy one- 
dimensional maps can provide models for the study of noise-induced phenom- 
ena described by stochastic differential equations. 

KEY WORDS: Nonlinear stochastic difference equation; integral master 
equation; noise-induced transition. 

1. I N T R O D U C T I O N  

It is well known  that external noise or f luctuat ions can have impor tan t  
effects on the dynamics  of nonl inear ,  dissipative systems near  bifurcat ion:  

noise may  promote  the existence of new states or enhance  the stability of 

existing states. The spectral density of the noise per turb ing  the system is 

also impor tan t :  in hydrodynamics ,  f inite-power noise may imitate the 
effects of higher modes on  those that  govern the system's evolut ion;  in 

biology and  physiology, oscillators are always susceptible to slowly varying 
r a n d o m  influences,  e.g., mild per turba t ion  of the normal  (periodic) sinus 
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rhythm of the heart. The fact that such phenomena occur widely and have 
physical relevance has stimulated much recent activity on this problem. 3 

Nonlinear differential flows exist frequently as (underlying) models of 
these continuous, physical systems. Next amplitude maps derived from the 
Poincar6 surfaces of section of such flows provide exact, simplified, dis- 
crete-time descriptions of their evolution. ~) For strongly dissipative flows, 
even reduction to a one-dimensional map preserves important characteris- 
tics of the flow geometry and the more conspicuous features of the 
parameter-space phase diagram of structurally stable flow behavior. For 
example, the period-three bistability and hysteresis phenomena of the 
R6ssler flow ~3) can be discussed in terms of the corresponding phenomena 
in a model cubic map. ~4> Here the bistability arises from dynamical effects, 
rather than from the system potential. There have also been a number of 
other studies of one-dimensional maps which exhibit bistability. C5-7) Since 
one-dimensional maps can imitate strongly dissipative flows, it is clearly of 
interest to examine the effects of noise on the dynamics of these dis- 
crete-time systems. C8-~1) Most studies to date have been on the logistic 
model, ~9-1 ~) with Gaussian or amplitude-limited (rectangular) noise. In this 
context, maps with rectangular noise are the discrete paradigm of flows in 
the presence of finite-power fluctuations. As shown by Mayer-Kress and 
Haken, ~t~ finite-amplitude noise allows one to establish sharp criteria for 
transitions between orbit components; similar abrupt changes occur in the 
spectrum of the integral evolution operator for the system. 

The present work is devoted to a study of noise-induced phenomena 
that occur for (a dynamical system defined by) a particular cubic map. Our 
primary goal is to characterize the escape and confinement criteria in the 
period-one and period-two regimes of the parameter space, along with the 
associated spectral properties of the evolution operator for the case of an 
amplitude-limited noise source. Although we only treat the period-one and 
-two regimes, even here the phenomena are rich and varied. 

The outline of the paper is as follows. In Section 2 we present a 
summary of those aspects of the two-parameter cubic map which are 
relevant to our studies of noise-induced phenomena. Since bounded noise 
permits the existence of noisy states with finite support, one may discuss 
the mechanisms by which, for example, two noisy orbits coalesce to form a 
single noisy orbit, or escape from a finite interval occurs. In Section 3 we 
characterize such mechanisms and give conditions for the sharp transitions 
that take place. The fourth section is devoted to a study of the noisy 
dynamics from the point of view of the integral (Chapman-Kolmogorov) 
equation. Here the focus is on the spectral properties of the integral 

3 See, for instance, Ref. 1. 
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operator, and we examine the structure of the eigenvalue spectrum, and the 
associated eigenvectors, as a function of the map parameters and noise 
amplitude. The final section contains a discussion of our findings, along 
with some comments  on the relevance of these noisy map models to noisy 
differential flows. In addition, we briefly contrast the amplitude-limited 
noise case with that of an unbounded noise source. 

The present work should provide a basis for further studies of noise- 
induced processes involving oscillating, bistable stages, and hysteresis ef- 
fects since these phenomena are amenable to a description in terms of a 
one-dimensional map. Such coexistence of oscillating states has been ob- 
served in a number  of (differential equation) models, (4-12) as well as 
experimentally.{6) 

2. THE DETERMINISTIC CUBIC MAP 

In this section we consider the discrete dynamical system defined by 

xt+,  = C ( x ,  ; a , b )  (2.1) 

where C is the cubic polynomial 

C ( x ; a , b )  = ax  3 + (1 - a ) x  + b(1 - x 2)  (2.2) 

The regions in which certain characteristic behaviors are observed are 
displayed in Figs. la  and lb. We shall consider the effects of noise on the 
dynamical  system in this portion of the phase diagram. The parametric 
form of the map in Eq. (2.2) makes this phase diagram symmetric about the 
line b = 0, since trajectories (x,} at (a, b) have mates { - x,) at (a, - b). 

Some aspects of this and related phase diagrams have been described 
previously, {4A3-17)'4 so we restrict our description to those features which 
are relevant to the present study. Beyond the rather large region of stable 
period-one (contained between the boundaries t and h in Fig. 1 a) there is a 
region where more subtle dynamics occurs. On h (whose equation is 
b 2 + a(2 - a) = 0) period one subharmonically bifurcates to period two. At 
b = 0, a = 2, the period-two orbit is born symmetrically out of the origin 
x = 0, but it is born unsymmetrically elsewhere on h. Along b = 0 the 
symmetric orbit becomes doubly superstable at the lower crossing of the 
dashed lines (Fig. 1 a) and then undergoes a symmetry breaking bifurcation 
at a = 3 in which two period-two orbits are produced by an orbit doubling 
process at the cusp of t' (Fig. lb). Although these new orbits are not 
symmetric even for b -- 0, taken together, they possess the symmetry of the 
map. Elsewhere on t '  one period-two is produced by a tangent process {2) 

4 For a discussion of the antisymmetric cubic map, b = 0, see Ref. 14. Some of the features 
described here have been shown to exist in the map xt+ 1 = xt + a + b sin2~rxt in Ref. 17. 
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Fig. 1. (a) Phase diagram for the cubic map in the (a, b) plane showing the period-one and 
period-two regions: t denotes the tangent boundary where period-one is first born; h is the 
harmonic boundary where bifurcation from period-one to period-two takes place; h' and h" 
are harmonic boundaries separating period-two and period-four. The inner dashed lines are 
lines of superstability for period-one and period-two orbits. An enlarged view of the small 
square is shown in Fig. lb. (b) An enlarged view of the region where the h' and h" boundaries 
cross. The inner tangent boundary t' is also shown. This boundary denotes the bifurcation 
from a single period-two orbit to two distinct period-two orbits: inside this boundary hysteresis 
and bistability occur. 
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a n d  the  o the r  is a c o n t i n u a t i o n  of  the  exis t ing  p e r i o d - t w o .  Bis tab i l i ty  exists 

ins ide  the  cusp  r e g i o n  e n c l o s e d  by  t '  a n d  hys teres i s  p h e n o m e n a  a re  possi-  

ble.  As  d i scussed  ear l ie r  (n) a cusp  c a t a s t r o p h e  m a n i f o l d  in { x ) X { a , b }  is 

the  f ixed  p o i n t  so lu t ion  set wh ich  unde r l i e s  the  d y n a m i c a l  effects .  E v e r y -  

w h e r e  w i t h i n  the  cusp  reg ion ,  th ree  p e r i o d - t w o  so lu t ions  exist :  the  i n n e r  

shee t  of  the  c a t a s t r o p h e  m a n i f o l d  is the  u n s t a b l e  p e r i o d - t w o  so lu t ion .  

0 --  
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Fig. 2. (a) Sketch of the cubic map for a = 3.1 and b = 0.0 showing the two coexisting period 
two orbits. (b) The second power of the cubic map, C(2)(x; a, b) (central solid curve), for the 
same parameters as in (a). The heavily shaded regions at the base of the figure denote the 
basin associated with one of the period-two orbits, while the unshaded regions refer to the 
basin of the other period-two orbit. The dashed curves in this figure are the NL second power 
functions, F +, discussed in Section 3 for ,8 = 0.075. 
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The crossing of the superstable lines within t' implies that two distinct 
superstable period-two orbits exist, one belonging to each map extremum. 
An example of two coexisting period-two orbits is shown in Fig. 2a. 

In the regions of parameter space where single periodic motion exists, 
the basin of the stable attractor is the entire interval I = [ -  l, 1]. However, 
in the bistable region, the interval I splits into complementary interleaved 
basins. (18) Throughout the cusp region there is a denumerable infinity of 
preimages of the unstable period-two fixed points which separate the basin 
components for the two stable period-two attractors. For b = 0 the frag- 
ments of each basin cluster at - 1, 0, and 1 in I. By symmetry, for b = 0, 
the measure of each basin must be half that of I. In contrast, for b v ~ 0, one 
stable period-two orbit exists on both sides of t' while the stable-unstable 
pair, since they arise by a tangent process, exist only on the inside of t'. As 
a result, the fixed points of the stable and unstable period-two orbits (and 
their preimages) are always close to each other near t', though relatively far 
from the coexisting period-two; thus the measure of the basin of the newly 
born attractor grows as e 1/2, where c is the distance from t', since the 
second-power map is locally quadratic near the tangent point. Only at the 
cusp do the basin measures change discontinuously. The basin structure for 
period-two at a = 3.1, b = 0 is shown in Fig. 2b; the second power of the 
map is also displayed. The fragmented basin structure could have impor- 
tant implications for certain types of noise-induced processes. 

In this paper we discuss the dynamics for period-one and -two and 
hysteresis in the vicinity of the period-two cusp. However, it appears that 
every harmonic family gives rise to a Cantor set of cusps. Because of our 
parameterization of the cubic map, period-one has no cusp but period-two 
contains one cusp and the two distinct branches of period-four contain two 
cusps, period-eight four cusps, and so on. Evidence for the Cantor set of 
doubly superstable orbits associated with these cusps for the quartic map 
has been discussed by Chang, Wortis, and Wright. (19) Such a structure 
appears to be generic for a large class of two-parameter maps. The study of 
the effects of external noise on the dynamics in these regions is obviously a 
complex and challenging task. 

3. STOCHASTIC  DIFFERENCE EQUATIONS:  ESCAPE AND 
C O N F I N E M E N T  CRITERIA 

The dynamics of the noise-driven cubic map is governed by the 
stochastic difference equation 

x,+, = C ( x , ; a , b )  + 7t (3.1) 

where the random variables ~t are identically distributed and belong to a 
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uniform rectangular distribution on the interval [ - /3 ,  [3]. Thus the proba- 
bility density for any T/t is given by 

{(2/3) -~ if 17/I ~< fl 
W(7/) = 0 otherwise 

(3.2) 

This section is devoted to a description of the various escape, confine- 
ment, and transition criteria as 13 is changed involving noisy period-one and 
period-two orbits. We will show that in a transition, critical paths appear, 
which differentiate the ways in which probability flux may propagate 
within the system. The ensembles of critical paths governing these various 
fluxes determine the evolution of the density in the integral (field) represen- 
tation of the system's dynamics, and are thereby closely related to the 
structure of this operator's spectrum and eigenstates, which are discussed in 
the following section. 

The fact that the noise is amplitude limited leads to the possibility that 
there exist noisy periodic orbits with finite support. (1~ Thus, we may 
examine the circumstances under which such bounded support exists, when 
several disjoint regions may merge, and when escape from the interval I is 
possible. It is simplest to consider first the antisymmetric cubic map 
(b = 0), and describe the processes that occur as /3 increases for various 
fixed values of a. We then turn to a brief discussion of the noisy dynamics 
for b ~ 0. 

3.1. Period-One Regime 

Recall that for the deterministic cubic map the origin is a stable 
period-one fixed point for 0 ~ a ~< 2, b -- 0. There are also unstable fixed 
points at + 1. We examine first the noisy dynamics below superstability 
(a < 1). The map function in this region of parameter space is shown in 
Fig. 3a. The confinement and escape criteria for period-one are governed 
by the noise-limit (NL) map functions C(x; a, b)+_ fl (Fig. 3a). Iteration of 
a noisy map is similar to that for a deterministic map, except that the 
"noisy" image of a point always lies between the NL functions. Like the 
cubic map function itself, for small fl these NL map functions also possess 
one stable and two unstable fixed points: A _+ are the stable fixed points of 
C(x) + _/3,  while B_+ and C_+ are the unstable fixed points. From an 
examination of Fig. 3a it is clear that the stable fixed points A _+ determine 
the support of the noisy period one orbit: J = [A _,A+ ]. The correspond- 
ing invariant density is shown in Fig. 3b. 

The infinite interval [ - m ,  oe] can be partitioned into several regions 
(see Fig. 3a) in which distinctive dynamics occur, and which provide a 
convenient reference for the discussion of the fate of iterates under the 
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Fig. 3. (a) The cubic map (C)  for a = 0.5 and b = 0. Also shown are the NL  map functions 
C(x; 0.5, 0) _+ # with # = 0.1. The fixed points of these functions are A +, B_. and C_+. The 
partition of the infinite interval [ -  oo, ~ ]  into the regions J ,  W+_, ~ +  and o~177 discussed in 
the text is shown at the bottom of the figure. (b) The invariant density of the noisy map 
depicted in (a). 
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noisy map. Provided/3 is sufficiently small (see below), we may classify the 
dynamics in the various regions in the following way: (1) Points initially in 
E+ always escape to _+oo and are never trapped; (2) points in the 
"reservoirs" ~_+ wander until they either are trapped by E_+ and escape to 
_ oo or enter the "channels" -#+, in which case they eventually enter the 
asymptotic support J and are trapped. Thus, once points are in J they 
never leave it; points in -#_+ eventually end up in J ;  points in ~_+ either 
enter ~_+ (and end up in J )  or enter E+ and escape. 

The limits of the asymptotic support J -- [A _,A + ] are easily deter- 
mined from the solutions of the fixed-point equations 

C(A +_ ; a, O) + fi = A +_ (3.3) 

which, for small values of fl, are given approximately by A + = _+ f i / a ,  and 
therefore the support has m e a s u r e / x ( J )  = 2 f l /a .  

From an examination of Fig. 3a one may also see that the stable and 
unstable fixed-points in the pairs, ( C _ , A _ )  and (A+ ,B+) ,  move toward 
each other as/3 increases, and finally coalesce at a critical value of fi = fie. 
For values of fi > fie a stationary density no longer exists and iterates 
eventually escape to infinity. This escape mechanism involves a tangent 
bifurcation process for the NL map functions: at fl = fie the slope of the 
NL map function at the marginally stable fixed points A+ is unity 

[C'(A_+)= 1]; thus A+ =_+,/3-/3,  independent of a, and C(A+_)_+/3 e 

= A_+ yields f le=2~.[3a/9.  When /3 increases beyond fie the N L  fixed 
points move into the complex plane and iterates may escape through the 
small channels that are formed, provided the proper noise sequence occurs: 
a long string of 7/t values with [rlt[~/3 is required for a passage through the 
channel. Thus, while escape is possible for/3 >~ fie, very long transients are 
to be expected for initial states with density in the central region. An almost 
successful passage through the channel is shown in Fig. 4. This figure also 
illustrates the iteration process for a stochastic sample path. 

As a increases and deterministic period-one moves through superstabil- 
ity, new confinement and escape criteria must be applied. Although period 
one is stable for a ~< 2 we must apply separate escape criteria for a < 4 /3  
and a > 4/3 .  This value of a is a critical value for the antisymmetric cubic 
map where the minimum (maximum) is mapped under C(x;  a, 0) _+ fi into 
the tangent fixed point of C(x; a,O)_+/3, which, as noted earlier occurs at 
x = ~ ~/'3/3: 

) ) _ ~ ;a, 0 T-fl=C T--~ - - ;a ,0  u  

which yields a = 4/3.  
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Fig. 4. A schematic representation of an almost successful passage through the channel 
which exists for the tangent escape mechanism. 

Figure 5 is a sketch of the map for 1 < a < 4 / 3 ,  along with the 
associated N L  functions C(x) +_ fi for two values of ft. If fl is sufficiently 
small it is possible to construct a stable, N L  period-two orbit (shown in the 
center of the figure), which determines the asymptotic support of the noisy 
period-one orbit. More specifically, J - - [ L ,  R], where L and R are solu- 
tions of the fixed-point equations 

C(L;a ,O)  + ~ = R, C(R; a,0) - / ~  = L (3.4) 

Since the N L  period-two orbit is stable, all noisy iterates of the map 
will be attracted to the interval" [L, R]. For small fl the N L  period-two fixed 
points will lie near the origin and can be found from a linearized analysis: 
R,L = _+/3/(2 - a). The N L  period-one fixed points, A+ = + f l /a, which 
are also solutions of Eq. (3.4), are shown in Fig. 5, along with R and L. 

Increasing 13 causes the diameter of the N L  period-two orbit to grow, 
and eventually its fixed points coincide with the maximum M and mini- 
mum m of the map. Since the extrema of the map are located at M , m  = 
+ [ ( a ,  1)/3a] 1/2 the value of fi at which this occurs, say, tic, is easily 
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Fig. 5. The cubic map (center solid curve) for a = 7 /6  and b = 0, along with the associated 
NL map functions for B = 0.1 (solid curves) and/3 = 0.25 (dashed curves). The relevant fixed 
points discussed in the text and the asymptotic support J are also shown. 

found from the equation 

and is given by 

C ( M ; a , O )  + fie = m (3.s) 

a -  1 ]1/2 

When B >/~c the support of the noisy period-one orbit is determined by 
the noisy images of the maximum and minimum of the map: J = [C(m) - 
B, C ( M )  + B]- This is also depicted in Fig. 5 for B = 0.25. This condition 
determines the asymptotic support until the N L  map function becomes 
tangent to the bisectrix. The tangent escape mechanism discussed earlier 
then operates and iterates are no longer confined to a bounded region. 

If a < 4 /3  the minimum (maximum) is mapped to the right (left) of 
the tangent fixed point and the tangent mechanism determines the escape 
criterion. However, for a > 4//3 the reverse is true, and the minimum 
(maximum) is mapped under the NL map to the left (right) of the tangent 
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fixed point. As a result, escape will have occurred before tangency is 
reached and is now determined by the condition that the minimum 
(maximum) is mapped into the unstable fixed point C_ (B+)  (see Fig. 5), 

C(m;a,O) - fi = C_ 

C(M;a,O) + B = B+ 

In fact, this condition determines when escape occurs for 4 /3  < a < 4 
regardless of the stable orbit supported by the deterministic map. We 
observe that this mechanism is an obvious analog of chaotic band break- 
down; cf. Refs. 11 and 15. 

4 

3.2. Symmetric Period-Two Regime 

In the absence of noise, period-two is born out of period-one by a 
pitchfork bifurcation at a -- 2 (b = 0), and remains stable until a = 3, where 
a bifurcation into two distinct period-two orbits occurs. In the period-two 
region the support criteria are again most conveniently discussed in terms 
of NL  map functions, except that one must now deal with NL functions for 
the second power of the map. We define these functions as 

I max C [ C ( x ) + 7 ] + f l  
-#<~< # (3.6) 

F + - ( x ; a ' b ' f l ) =  min C [ C ( x ) + ~ l ] - f i  
-#<n<~# 

From the definition, Eq. (3.6), one can see that these functions represent 
the maximum excursion an iterate starting at x may take to the right (F  § ) 
or left ( F - )  in two iterations under C. In the vicinity of extrema of the 
map, values of 17] which are smaller than fl produce maximal excursions in 
two iterations of the map. An illustration of these second-power NL 
functions for a large value of fl is shown in Fig. 2b. The flat regions of these 
functions correspond to 17] </~;  they are much less pronounced for small- 

er ft. 
We first consider period-two just beyond marginal stability where 

a ~> 2: here the orbit has a small diameter and is symmetric with respect to 
the origin for b -- 0. In addition, in the relevant region the N L  functions are 
simple and are given by 

F~-(x;a,b, f l ) =  C[ C(x) +_ fl] ++- fi (3.7) 
A schematic diagram of the second power of the cubic map, C(2)(x; a, 

0), along with the NL functions F -+ is presented in Fig. 6 for small values 
of x. If we let a = 2 + E with e small, C(2)(x; a, O) possesses stable fixed 
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Fig. 6. A schematic diagram showing the shapes of the second power of the cubic map and 
the NL functions F -+ near the origin for a >~ 2 and b = 0 when /3 is small. The fixed points 
and asymptotic supports are also indicated. 

points at A 1,2 = -T-~- (the origin is an unstable fixed point); on the other 
hand,  the N L  function F + ( F - )  has stable fixed points at C 1 and B 2 (B 1 
and  C2) and an unstable fixed point  at D 1 (02). For  small values of E and /3  
( / 3 / e  << 1) fixed points can be determined perturbatively and are given by 

B, , C 1 = -,/7-T- /3 / 2 (  

c 2 ,  B2 = - q7 

and 

D1, D 2 = 7- f l / (  

The situation is reminiscent of the period-one case depicted in Fig. 3a, 
except that the stability of the fixed points is interchanged. The disjoint 
support,  J l , 2 ,  of the noisy period-two orbit  is determined by the stable 
fixed points of F-+: JPl----" [BI,C1] and  J 2  = [C2,B2]. Using the above 
results for the fixed points, the measure of these supports for small values 
of ( and  /3 are / * ( J l ) = / * ( J 2 )  = / 3 / e .  The densities in J l  and J 2  are 
mapped  cyclically into one another  under  the noisy cubic map.  
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(a) 

0 +1 

(b) 

Fig. 7. (a) The invariant density for a = 2 . 1 ~ 2  and b = 0 for f l =  0.02 < tim" (b) The 
invariant density for the same (a, b) values but  fl = 0.05 > tim" The two disjoint bands have 
merged. 

As fl increases the fixed points C l and D 1 (D 2 and C2) approach each 
other and coalesce at a critical value of /3  =/3, , .  (For small e the critical 
condition C 1 = D 1 yields tim = (2/3)  c3/2") Beyond this value of /3 the 
disjoint noisy period-two components merge and a continuous invariant 
density exists between the (still stable) fixed points B~ and B 2. The 
mechanism for the merging process is, of course, just the tangent mecha- 
nism described earlier. Figure 7 shows the invariant density just below /~m 
(two disjoint peaks) and above tim where a bounded continuous density 
exists. When a = 2.5 (b = 0) the period-two orbit is doubly superstable, and 
it is clear that the merging mechanism changes. We shall not pursue the 
fate of noisy (singly stable) period-two in this paper, but instead discuss the 
bistable region. 

3.3. Broken Symmetry Period-Two Regime 

The analysis of the effects of small amounts of noise on the newly born 
(a ~> 3) pair of the broken-symmetry period-two orbits is similar to that for 
the single period-two orbit which occurs by bifurcation from period-one. 
The second power of the map was shown in Fig. 2b for a = 3.1. At 
somewhat smaller values of a, locally, in the vicinity of the unstable 
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period-two fixed points, the map shape is similar to Fig. 6. Thus, the 
previous analysis applies directly to this case: one may again construct N L  
map functions F +, whose stable fixed points determine the boundaries of 
the disjoint support of the components of the two distinct noisy period-two 
orbits. Again, as/3 is increased, a critical value of/3 =/32 is reached where 
stable and unstable fixed points of F -+ (in the vicinity of the unstable 
period-two fixed points of the map) coalesce and the support is no longer 
disjoint: now a single noisy period-two orbit exists rather than two distinct 
period-two orbits. This was briefly described earlier in Ref. 13. 

As a increases and the distinct period-two orbits move through su- 
perstability, new mechanisms are operative which are the analogs of the 
escape and confinement mechanisms for period-one for a > 1 (above 
superstability). This is depicted in Fig. 8, where a portion of the second 
power map near the period-two fixed point (cf. Fig. 2a) is shown. The 
support is determined by the noisy images under F -+ of the local extremum. 
For a certain range of a values, it is possible to map the local maximum M 
under F + to the left of the unstable fixed point of F - ,  D2, before C 2 and 
D 2 coalesce and F -  is tangent to the bisectrix. The process is clearly similar 
to that described earlier for period-one. Note that the noisy iterates are no 
longer confined to a channel as in the tangent mechanism. For these values 
of a, one may also construct criteria for the merging of the resulting two 

/ [ 

D 2 M C 2 

Fig. 8. Sketch of C (2) and  F + near one (fight, cf. Fig. 2a) of the unstable period-two fixed 
points. The figure shows how the local max imum M can be mapped to the left of D2, leading 
to a merging of the two distinct noisy period-two orbits, before F -+ is tangent to the bisectrix. 
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disjoint supports and the consequent formation of a continuous invariant 
density.(13) 

3.4, Noisy Dynamics for b =/= 0 

We shall not give a detailed description of the processes that occur 
when the map is asymmetric, except to say that similar mechanisms to 
those described above again operate but, since b =/= 0, the processes are not 
symmetric with respect to the origin. Thus transitions may first occur from 
a particular period-two component rather than from both simultaneously. 

The primary new feature that is introduced in going into the (a, b) 
plane, away from the line b = 0, is the possibility of studying the effects of 
noise on hysteresis phenomena. There are very interesting dynamics asso- 
ciated with the appearance and disappearance of the stable orbit as the 
tangent boundary t' (cf. Fig. lb) is crossed. An illustration of these effects is 
presented in Fig. 9, which shows some of the processes that take place as b 
is tuned, at constant a, through the bistable region at various noise levels. 
In (a) a hysteresis loop is shown for the deterministic system: as one 
progresses from left to right the system first resides on the upper branch 
period-two orbit (only one component is shown) until, at a certain value of 
b, the right tangent boundary t' (Fig. lb) is crossed and the system crashes 
to the lower branch period-two orbit. A similar process involving an 
upward transition occurs as b is tuned from right to left. The remaining 
figures (9b-d) show what happens to this hysteresis loop as increasing 
amounts of noise are added to the system. The figures were constructed by 
plotting the iterates of the noisy map, after most transient behavior is 
allowed to relax, for many different values of b. Thus, a cut through the 
figure at a particular b value gives the invariant density for the selected 
(a, b), and the given/3 value, tin some regions of the figure (4c), the system 
is not fully relaxed.] One observes processes in accord with merging criteria 
described earlier: in (b) we have two distinct noisy period-two orbits with 
crashes between these noisy orbits occurring at the ends of the hysteresis 
loop. Figure 4c shows the case where noise-induced transitions between the 
bistable orbits take place. The orbit components with disjoint support have 
merged and one has a single noisy period-two orbit. Each component of 
this period-two orbit has a density which is bimodal, as can be seen in the 
figure. In Figure 4d, which represents a still greater value of fi, one can no 
longer distinguish the original period-two components; any vestige of the 
hysteresis loop has disappeared and one has a single noisy period-two orbit 
with unimodal density in its components. 

Rather than elaborating on these interesting phenomena, we take up 
an integral equation description of noisy dynamical processes. 
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Fig. 9. Effects of noise on  the hysteresis  p h e n o m e n a  at  a = 3.1 and  vary ing  b. (a) Determinis -  
tic map :  /? = 0, (b) noisy hysteresis  loop /3  = 0.005, (c) t ransi t ions  occur  between the bis table 
states: 17 = 0.025, (d) bis table s tates  can  no longer  be dis t inguished:  fl = 0.100. 

4. INTEGRAL EQUATION DESCRIPTION 

It  is of ten convenien t  to descr ibe  re laxa t ion  processes in terms of the 
e igenvalue  spec t rum of an app rop r i a t e  evolut ion  opera to r  fo r  the system; 
the discrete d y n a m i c a l  system s tudied  here  has such a field representa t ion.  
The  discussion in Sect ion 3, which was based  on the s tochast ic  (Lan-  
gevin) d i f ference equat ion,  can  be fo rmula t ed  in terms of a C h a p m a n -  
K o l m o g o r o v  integral  equa t ion  in o rder  to ob ta in  c o m p l e m e n t a r y  in forma-  
t ion a b o u t  the dynamics .  (]~176 

F r o m  the s tochast ic  difference equa t ion  (3.1) we see that  the p robab i l -  
i ty dens i ty  for the r a n d o m  var iab le  x t+  1 - C ( x t ; a ,  b )  is W(~t) ~ W(~),  and  
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so depends on fl through Eq. (3.2). Thus, W is the transition probability 
density from x t to xt+ 1. Writing x = xt+ 1 and y = x t the equation for the 
propagation of the density p(x,  t) may be written 

p ( x , t  + 1) = f dy w[ x - c ( y ;  a,b)  ] p ( y , t )  (4.1) 

or more formally as 

p(t  + 1)= l~Vp(t) (4.2) 

which defines the integral operator I~. Since [~ is not a symmetric operator 
it possesses distinct left and right eigenstates: the right eigenstates are 
physically more important since the probability density of the system may 
be expanded in terms of them, and we write the eigenvalue problem as 

I?Vpj --- )~jpj (4.3) 

while the corresponding eigenvalue problem for the left eigenstates is 

q,j l~ --- ~j,j (4.4) 

where W is understood to act to the left. 
Before presenting results which are specific to the cubic map problem 

it is useful to give a brief general account of some of the spectral properties 
of Eq. (4.3). We note that 

fdx W(x, y )  = 1 (4.5) 

that is, probability is conserved by I~. This leads to a number of conditions 
on the spectrum. Some of these have been given earlier by Chang and 
Wright. (11) The spectrum of such an operator lies in the closed unit disk in 
the complex )~ plane. Any equilibrium state belongs to the eigenvalue )~ = 1, 
the degeneracy of this eigenvalue being the number of distinct equilibria 
under W. There may also be a periodicity underlying the equilibrium, as in 
the case of the noisy period-two state. All equilibrium states of this kind 
have associated eigenstates with unimodular eigenvalues ([~] = 1); their 
existence prevents strict relaxation to the equilibrium. (11) However, all 
suitable initial states relax to a linear combination of these "unimodular" 
states. 

In numerical computations employing Eq. (4.1) the continuous space 
Markov process was approximated by a sufficiently fine discrete Markov 
process in the space coordinate. The condition, Eq. (4.5), shows that l~ 
is just the continuous analog of a transposed stochastic matrix. The Fro- 
benius-Perron theorem (21) predicts the properties of both the eigenfunc- 
tions and spectra of such stochastic matrices. In particular, if f ~ ,  
f 2  . . . . .  J n  is an invariant sequence of disjoint sets visited cyclically 



Stochastic Dynamics of the Cubic Map 359 

( 4  -~ J j + l ,  J ,  -~ J l )  then the entire spectrum of the eigenstates, whose 
support is the union J = U j J j ,  of this sequence is cyclic. Thus for 
period-two (with two components for J )  both ~ and - ~  belong to the 
spectrum. It is easily shown that if X is a complex eigenvalue of 1~, X is also 
an eigenvalue. Thus for period-two, on J ,  the spectrum may in general 
contain quartets of eigenvalues {~, -X,X,-X)  which have simply related 
eigenstates. These results refer only to the asymptotic support J and are 
not true for states that extend outside J .  This property has been noted 
earlier for the unimodular spectrum (1~) and the above remarks show that it 
holds more generally and illustrates the close connection between the 
structure of J and the spectrum of 1~ restricted to J .  As implied earlier 
the cyclic character of the spectrum is a manifestation of the phase- 
coherent, periodic nature of the associated set of states. We shall present 
examples of phenomena involving such cyclic states as the amplitude of the 
external noise varies. 

Another feature of the class of integral operators discussed here is that 
with respect to the asymptotic support J the integral operator if/ is 
completely continuous and therefore zero is the only accumulation point of 
its spectrum. (22) 

We now turn to a discussion of the spectral properties of the noisy 
cubic map in the period-one and period-two regimes. In the course of this 
discussion we shall present the results of numerical solutions of Eq. (4.1) 
obtained by taking a finite grid for the space variable. It is, of course, clear 
that one must be careful that the grid size in any such simulation of the 
continuous space Markov process is finer than the scale of the phenomenon 
one is investigating. 

4.1. Period-One Regime 

It was noted in the previous section that provided fl < fie noisy 
period-one orbits with finite support J could be obtained for 0 ~ a ~< 2. 
We again initially focus our attention on the antisymmetric cubic map for 
simplicity. We shall first consider the character of the eigenvalue spectrum 
of the states (equilibrium and relaxing) defined on this support as the map 
parameter a varies. The equilibrium state pj(x) (belonging to the eigenvalue 
X 1 --- 1) is nondegenerate; we examine the structure of the slowest relaxing 
state. 

The major gross feature that is observed is the change in character of 
the relaxing eigenvalues as the map parameter passes through superstabil- 
ity, a = 1: for the deterministic map below superstability one observes 
monotone convergence to the period-one fixed point, while above su- 
perstability there is alternating convergence. This feature is reflected in the 
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eigenvalue of the slowest relaxing state: it is positive below superstability 
and negative above. If one considers the evolution of an arbitrary initial 
state defined on J ,  &(x), then this state can be expanded in terms of the 

A 
(complete) set of eigenstates of W with support J ,  

Os(X) = 2 ajos(x) 
J (4.6) 

aj =fdxq,j(x)os(x) 

Thus for long times 

O,(x, t) = alof fx  ) + X~azO2(x ) (4.7) 

where we have taken Oa(X) to be the slowest relaxing state; one sees the 
change in character of the time evolution of the initial density as a passes 
through superstability because of the change of sign of h 2. 

In the vicinity of the superstable point one may examine the solutions 
of the integral master equation in more detail if the noise amplitude is 
small. Since the origin is the period-one fixed point of the deterministic 
system small amounts of noise will produce noisy orbits with support with 
small measure ~ ( f l )  centered about the origin (see Section 3). If we let 
a = 1 -  ~, with e a small parameter, we may then expand the integral 
kernel W[x  - C(y;  a, 0)] as 

W [ x  - C(y;a ,O)]  = W ( x )  - e W ' ( x ) y -  (1 - e)W'y  3 + r  2) (4.8) 

The equilibrium eigenvector pl(x), which is symmetric about the origin due 
to the map symmetry, corresponds to the eigenvalue X~ = 1; we have [Eq. 
(4.3)] 

Ol(X) ~--- fay w[ x - c ( y ;  a, o) ]offy)  = W ( x )  + d(e 2) (4.9) 

where the higher-order terms from Eq. (4.8) vanish by symmetry and the 
fact that the equilibrium state is normalized as f s p l ( x ) d x  = 1 has been 
used. Thus near superstability (e = 0) the equilibrium state is given by the 
probability distribution for the noise. This is borne out by the results in Fig. 
10a which clearly show that the equilibrium density has a roughly rectangu- 
lar distribution. Using Eq. (4.8) for the integral kernel one may also 
compute the slowest relaxing state (with support J ) .  To order e the 
eigenvalue problem reads 

X~02(x) = - [ , v ,  + (1 - ~)v3]W'(x) (4.10) 

where 

= ( d y  y nOz(y ) (4.11) Pn 
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(C)I 

I -0.4 0 +0.4 
Fig. 10. (a) The invariant density near superstability: a = 1.0; b = 0,/~ = 0.3. The approxi- 
mately rectangular distribution of the equilibrium density is clearly evident. (b) Antisymmetric 
relaxing eigenvector for the same conditions. (c) Symmetric relaxing eigenvector for same 
conditions. 

I t  fo l lows  a f t e r  a su i t ab l e  se lec t ion  of  n o r m a l i z a t i o n )  t ha t  

P2(x) = W'(x) 
a n d  

(4.12) 

T h e  a b o v e  ana lys i s  p r e d i c t s  t ha t  the r e l ax ing  e igenva lue  s h o u l d  be  a l i nea r  
f u n c t i o n  o f / 3 2  wi th  i n t e r c e p t  e n e a r  s u p e r s t a b i l i t y  a n d  for  sma l l / 9 .  N u m e r i -  
ca l  resu l t s  for  ~t 2 a re  p r e s e n t e d  in F ig .  11 for  two  va lues  of  e = __ 0.1 as a 
f u n c t i o n  of  /32. Al l  r e l a x a t i o n  e igenva lues  were  e s t i m a t e d  b y  the p o w e r  

X 2 = E + (1 - e) /32 (4.13) 
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Fig. 11. Plot of the slowest relaxing eigenvalue with support  J as a function of fl 2 for two 
values of c: upper curve, c = 0.1, below superstability, the slope is 0.945 (predicted 0.9); lower 
curve, ~ = - 0 . 1 ,  above superstability, the slope is 1.125 (predicted 1.1). The relaxing state is 
antisymmetric. 

method (iteration) after projecting out the equilibrium state by subtraction. 
The linear variation of X 2 with f12 is confirmed as is the value of X 2 at 
fl = 0. In addition, the predicted slope, 1 - e, is in rough accord with the 
numerical values. As a further test one may examine the behavior of the 
relaxing eigenvalue and superstability. Equation (4.13) implies X2(e = 0) 
= 8 2, which is confirmed by the estimated slope of 2.05 in Fig. 12. The 
relaxation near superstability is very fast. The expression for the (antisym- 
metric) relaxing eigenvector in Eq. (4.12), which may be written as 

o2(x) = ( 2 8 ) - ' [ 8 ( x  + •) - 8 ( x  - 8 ) ]  (4.14) 

implies that for ~ ~ 0 this eigenvector should be flat and nearly zero in the 
center of the support and sharply peaked at the ends. Figure lOb confirms 
this structure. This analysis can be extended one step further to predict a 
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Fig. 12. Plot of relaxation eigenvalues - In ~2 (a) and - In ~3 (S) versus -- In fl at superstabil- 
ity (a = 1.0, b = 0). The computed slope for the antisymmetric state (a) is 2.05 corresponding 
to the prediction )~2 = f12 and the slope for the symmetric state (s) is 4.13 corresponding to 
)t 3 = 3fl 4 (cf. Fig. 10). 

(right) symmetric  relaxing state proport ional  to 8 ' ( x  + f l )  + 6 ' ( x  - f i )  be- 
longing to the eigenvalue ~3 = 3fl 4. Again  careful numerical  work confirms 
this prediction very well: the calculated fl exponent  of ~3 is 4.13 (see Fig. 
12) and Fig. 10c shows the appearance  of the computed  eigenvector. 
[Formally one ma y  cont inue this procedure  but  the singular structure of the 
(right) eigenvectors prevents easy computa t ion  of higher states.] 

In  obtaining the results presented in Figs. 10-12 care was taken to 
insure that the initial states were within a specified interval (see below) 
containing the asymptot ic  support.  However,  arbitrarily prepared initial 
states may  have components  f rom eigenstates with support  outside of J :  
such eigenstates m a y  relax more slowly than those with support  J and, as 
a consequence,  they will govern the long-time behavior  of the system. The 
manner  in which this occurs can be described by referring to the partition 
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C) _0_ _0 
L e§ 

Fig, 13. Digraph for the Markov chain model exhibiting features of the relaxing states with 
support outside J .  Regions of escape •+_ are represented by strings of vertices; the channels 
i f •  connecting the reservoirs ~,~• to the support J are represented by single vertices. Vertices 
without loops correspond to one-way flux. 

of the infinite interval [ - o o ,  oo] given in the inset of Fig. 3a, and the 
discussion of the dynamics on this partition in Section 3. Recall that initial 
states in the reservoirs ~ +  may either enter E+_ and escape or enter if• 
and thus ultimately become trapped in J .  The dynamics can be crudely 
modeled and discussed in terms of the Markov chain in Fig. 13. Like the 
Chapman-Kolmogorov equation, this Markov chain possesses an equilib- 
rium eigenvector associated with the state J ,  reservoir states ~ +  from 
which transitions may occur to channels ~_+ and to (the infinite number of) 
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Fig. 14. Estimate of relaxation eigenvalue X at superstability (a = 1.0, b = 0) and fl = 0.3 as 
function of integration interval J = [ - j ,  j] starting from antisymmetric state (a) and symmet- 
ric state (s). If J D ~?+ U ~ _  the (a) and (s) X values coincide. For J 75 ~ •  with (a) and (s) X 
values correspond to the support J .  
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states in •+ where there is a one-way current. For such a Markov chain it 
is easy to verify that the system need not have a complete set of eigenstates, 
and states that relax into the equilibrium state need not be normalizable. 
Numerical simulations of the integral equation have verified the existence 
of relaxing states with such properties. Figure 14 shows the estimated 
relaxation eigenvalue Xj for varying integration interval J = [ - j ,  j] at 
constant noise amplitude 19 = 0.3 and a = 1, b = 0. If J contains the 
reservoirs ~_+, Xj (estimated iteratively) is large and independent of the 
symmetry of the initial state: Xj depends only on the equal, forward 
transition rates out of the reservoirs. As the end points of J move inward 
through the reservoirs X s decreases rapidly since the probability of remain- 
ing in the remnant of ~ +  in J decreases. If J contains no part of ~ •  the 
symmetry of the initial state determines whether Xj assumes the (small) 
symmetric or antisymmetric relaxation value on J ;  the channels do not 
contribute since, under iteration, the one-way flux in ~+_ sweeps any 
amplitude into J .  If b ~ 0 ~ +  are no longer equivalent and relaxation 
occurs at a different rate from each reservoir. 

4.2. Period-Two Regime 

We shall now give a brief account of some features of the eigenvalue 
spectrum for values of the map parameter where the deterministic system 
supports period-two orbits. The emphasis of the discussion will be on the 
change in character of the eigenvalue spectrum as the noise amplitude is 
tuned through the various critical values defined in Section 3, and on the 
dependence of the relaxing states on the noise amplitude. 

As an example we suppose that the deterministic system is in the 
bistable region and two period-two orbits coexist. (The specific results 
presented below are for a = 3.1 and b = 0.) As noted earlier, if the external 
noise amplitude is small, fl < f12, the asymptotic support consists of four 
disjoint bands, J = (_j4= l j i .  These distinct noisy bands are visited cycli- 
cally i n  pairs, corresponding to the existence of two noisy period-two 
orbits: f ] o J 3 ~ J l  and J 2 ~ J 4 ~ J 2 .  Hence, in accord with our 
general discussion there are eigenvectors defined on J with eigenvalues 
X = _+ 1, each of which is doubly degenerate. As fl increases beyond r2 a 
bifurcation (described by the mechanisms in Section 2) occurs in which 
transitions between the two noisy period-two orbits take place. Thus the 
supports J l  and J 2  are joined into a single support J l ' ,  as are J 3  and J 4  
to form J ~ .  Close to r2 the density is strongly peaked near the components 
of the previously stable noisy period-two orbits (see also Fig. 9c). This 
transition entails the lifting of the degeneracy of the eigenvectors associated 
with X = + I, but phase coherence is preserved since J [  and J ~  are still 
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Fig. 15. (a) Eigenstate corresponding to • =  1: a = 3.1, b = 0, fl = 0.015. (b) Eigenstate 
corresponding to X = - 1 for the same parameter values. 

m a p p e d  cyclically into one another ,  J l '  ~ J ~  ~ J ( .  Thus,  just  beyond  the 
transit ion the (now nondegenera te)  )t = _+ 1 eigenvalues persist and  there 
exist two relaxing eigenvalues +_X with IX I <~ 1. The  eigenvectors corre- 
sponding to X = +_ 1 are shown in Fig. 15 for 2fi = 0.03. We  note that  if 
/3 </32 and  four disjoint supports  exist, symmetr ic  and  an t i symmetr ic  
e igenfunct ions  can be cons t ruc ted  co r respond ing  to the e igenvalues  
)t -- + 1: let 7 (x)  be  the equil ibrium density on J ~  ( $ 4 )  a n d / x ( x )  that  on 
J 2  ( J 3 ) ,  then clearly Iiz(7 + t~) = (Y + / 0  and  W(7 - ~t) = - ( 7  - / 0  since 

A A 

W7 =/~  and  W/x-- Y. This character  is also observed in the results in Fig. 
15. The  behavior  of the eigenvalue corresponding to the symmetr ic  relaxing 
state with )t ~> - 1 is shown in Fig. 16 as a funct ion of the noise ampli tude.  
F r o m  this figure it can be seen that  X approaches  - 1 very slowly as fi goes 
to /~2 (/~2 = 0.00691301 for a = 3.1, b = 0)(J3); this is a reflection of the 
"sof tness"  of  the transition, which is expected in view of the mechan isms  
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Fig. 16. Dependence of ), on ,8 for the symmetric relaxing state with negative eigenvalue: 
a = 3.1, b = 0. ,8 2 is the critical/9 value for merging of distinct noisy period-two orbits. 
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Fig. 17. Dependence of 2, on/3 for the antisymmetric relaxing "gap" state: a = 3.1, b = 0. fl,,, 
marks critical ,8 value for joining of support from two disjoint regions into one connected 
region by filling the central gap. ,se marks ,8 value for escape. No invariant density on 
bounded support exists above fie. 
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responsible for transition process (cf Section 3): the density in the region 
between the components increases smoothly although the support changes 
discontinously. 

The next transition that occurs as fl increases is the joining of the 
disjoint supports J (  and J ~  to form an equilibrium state with a continu- 
ous invariant density. This occurs at /3 =/3  m. As /3 increases beyond /3m 
phase coherence is lost and X --- - 1 is no longer an eigenvalue of if'. Once 
again, although the transition is abrupt, the density between the noisy 
period-two peaks changes smoothly; this is again reflected in the behavior 
of the eigenvalue corresponding to this antisymmetric "gap" state; it 
approaches X = - 1  smoothly as fi goes to  /3m (/3rn = 0.10457772 for a = 
3.1, b = 0) (13) (cf. Fig. 17). 

We have not attempted to construct models for the t3 dependence of 
these relaxation eigenvalues as fl approaches the critical values of/32 or/3m, 
although this could be done on the basis of the mechanisms presented in 
Section 3. 

To complete the picture of the changes that occur as/3 increases we 
note that when 13 surpasses /3e' the escape value, X = 1 is no longer an 
eigenvalue and slowly relaxing states associated with this transition appear 
(see Fig. 17). 

5. C O N C L U S I O N  

We have presented two complementary descriptions of noise-induced 
transition and relaxation phenomena for the cubic map. From a consider- 
ation of the dynamics in terms of the stochastic cubic map, mechanisms for 
the various transitions that take place when the map parameters and noise 
amplitude are varied were presented. These same processes were then 
related to the spectral properties of the integral operator in the Chapman-  
Kolmogorov equation. In this paper we have focused on the behavior in the 
period-one and period-two regions of the map. Even here the rather large 

�9 number of processes that take place required detailed study. However, it is 
seen that these noise-induced phenomena can be described in terms of a 
few mechanisms, for example, the tangent mechanism below superstability 
and the analog of chaotic band breakdown (1 l,ls) above superstability. For 
the bounded-noise-amplitude case studied here the supports of the various 
noisy orbits change abruptly but the transitions appear smooth since the 
density between such noisy bands increases smoothly from zero. This is 
reflected in the behavior of the eigenvalues corresponding to relaxing states 
near the transitions: they appear to approach these limiting values 
smoothly as the noise amplitude approaches the transition value. 
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Although most of the results presented in the paper apply to the 
antisymmetric cubic map (b -- 0), one of the primary motivations for our 
investigation of the noisy dynamics of the cubic map is the fact that the 
effects of noise on hysteresis phenomena can be studied by considering the 
map in the (a, b) plane. The effects that are observed as the noise amplitude 
is increased, such as a shrinking of the hysteresis loop and enhanced 
stability of stable states, are similar to those observed in stochastic differen- 
tial equations. (1) The system is especially susceptible in the cusp region and 
near the tangent boundaries where "crashes" between bistable states occur 
in the deterministic system. The investigation of the dynamics of such 
processes is an interesting topic. The connection between the deterministic 
dynamics of flows exhibiting hysteresis and the corresponding phenomena 
in the map has been noted(4); however, no detailed studies of the nature of 
the noisy map corresponding to a noisy flow have been reported. We are 
currently investigating this problem in connection with the cubic map as a 
model of the RSsler equations. In some circumstances it is possible to 
construct one-dimensional models for real systems where certain map 
parameters are directly related to physical control parameters. (6'17) The 
present investigation of noisy maps should be directly applicable to the 
analysis of such systems when the control parameters are subject to 
fluctuations. 

The amplitude-limited noise case studied here is rather special: it 
permits the existence of noisy dynamics on intervals with bounded support. 
This behavior should be contrasted with that of unbounded noise sources, 
such as Gaussian noise. Here escape to infinity is always possible and a 
stationary equilibrium density cannot be established. In spite of this differ- 
ence the mechanisms constructed for the amplitude-limited-noise case may 
also be of some use in the analysis of the effects of unbounded noise. We 
saw that although the support changed discontinuously for bounded noise 
the onset of transitions was actually smooth. For unbounded noise the 
supports are always joined, but transitions may only occur rarely for low 
RMS noise amplitudes, and only readily when certain conditions on the 
RMS amplitudes, similar to those in the mechanisms described above, are 
satisfied. 

The present study provides a framework for studies of transition and 
relaxation processes that occur in noisy one-dimensional maps. 
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